(-x^2/5)+15=0

Simple and best practice solution for (-x^2/5)+15=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-x^2/5)+15=0 equation:



(-x^2/5)+15=0
We get rid of parentheses
-x^2/5+15=0
We multiply all the terms by the denominator
-x^2+15*5=0
We add all the numbers together, and all the variables
-1x^2+75=0
a = -1; b = 0; c = +75;
Δ = b2-4ac
Δ = 02-4·(-1)·75
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-1}=\frac{0-10\sqrt{3}}{-2} =-\frac{10\sqrt{3}}{-2} =-\frac{5\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-1}=\frac{0+10\sqrt{3}}{-2} =\frac{10\sqrt{3}}{-2} =\frac{5\sqrt{3}}{-1} $

See similar equations:

| 14=-5+x | | 4x-1/5-1=5x-5 | | m/5+62=72 | | t=2t+20 | | 5x2+14x+10=0 | | r/4+49=55 | | 6(3x-6)+6=-30-x | | 3y+2=42 | | x-6.3=4.1 | | 7=1+2k | | 60-10y=5y | | 4(2-x)15=3(x+3) | | 18-56=20-(-e) | | 14z−9z=5 | | 2x+5=x4-4 | | 12r=2+13r | | 2y+8=2(y-4) | | 11n=6+13n | | W=15h+20 | | -18x-14=-176 | | 2x+54=7(x+5)-9 | | x/64=30 | | 8.6=2x3.8 | | 2x-4=5×2+10 | | 2r+8=2+8r | | b−7=2 | | 8k+6=6k+2k | | 14=3(v-2)-8v | | 16x=22=5x | | x/3=x/4+1 | | 1+8p=8+p | | 12v+10v+18=80 |

Equations solver categories